WED-237

Advancement of artificial intelligence in digital pathology: from exploratory endpoint to primary endpoint in non-alcoholic steatohepatitis clinical trials

Dean Tai¹, Kutbuddin Akbary¹, Yayun Ren¹, Elaine Chng¹

¹HistoIndex Pte Ltd, Clinical Research, Singapore

Email: Dean.Tai@histoindex.com

Background and Aims: Improvements in liver histology is the current accepted surrogate endpoint for accelerated approval for access to treatment before the impact on clinical outcomes are known in patients with non-alcoholic steatohepatitis (NASH). Recent clinical data has demonstrated the regression of NASH as a dynamic and heterogeneous process. Depending on the effects of different disease-modifying drugs, fibrosis may regress differently, with variations in morphological and architectural features across zonal regions. Hence, a histological system developed based on changes in untreated individuals does not account well for changes after an intervention. To address this, sponsors and regulatory agencies are working to explore the use of artificial intelligence (AI) in digital pathology to facilitate accurate fibrosis assessment. qFibrosis has been used in the past in phase 2 trials to help stratify patient inclusion criteria for successful phase 3 trials. The most recent development is the US Food and Drug Administration (FDA) approving the use of qFibrosis as a primary endpoint in a NASH phase 2 study.

Method: Using a stain-free second harmonic generation and two-photon excitation fluorescence (SHG/TPE) imaging technology, qFibrosis is an AI-based tool which offers a reproducible and quantitative way to assess liver fibrosis on a continuous scale. It is a knowledge-based machine learning tool capable of automatically identifying and differentiating portal tracts and central veins, as well as to quantify collagen characteristics such as length, width, and area to provide an objective assessment on fibrosis patterns including peri-portal fibrosis, bridging fibrosis, of which these are key morphological features defined in NASH fibrosis system.

Results: qFibrosis models have demonstrated correlation with histologically determined NASH scores, with significant correlation observed for qFibrosis (r=0.776) whereas the correlation between central pathologists' ranges from between 0.57 to 0.81 in retrospective studies. Furthermore, qFibrosis provides additional insights such as identification of the most potent fibrosis response in baseline F3 patients in some trials. Increasingly, qFibrosis is included in prospective studies, first as exploratory endpoint to supplement analysis done by pathologists (NCT03900429), then as a secondary endpoint in a NASH phase 2b study (NCT04906421), and most recently as a primary endpoint in another phase 2 NASH study (NCT05519475).

Conclusion: qFibrosis has the potential to provide a quantitative understanding of subtle morphological changes due to treatment-induced fibrosis regression, allowing it to be more sensitive to change within the timeframes of typical phase 2 and 3 NASH trials. This can be used for better stratification of patient inclusion criteria, which is crucial for efficacy evaluation during drug development, as well as for diagnosis once the drug is approved. This clearly demonstrates the utility of AI in digital pathology in a real-world clinical setting.

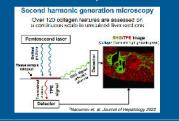
Advancement of artificial intelligence in digital pathology: From exploratory endpoint to primary endpoint in non-alcoholic steatohepatitis clinical trials

Dean Tai¹, Kutbuddin Akbary¹, Yayun Ren¹, Elaine L. K. Chng¹ ¹Histoindex Pte. Ltd., Singapore

BESULTS

New Standard | New Life

INTRODUCTION


- · Improvements in liver histology is the current accepted surrogate endpoint for accelerated approval for access to treatment before the impact on clinical outcomes are known in current NASH trials.
- · Recent clinical data has demonstrated the regression of fibrosis in NASH as a dynamic and heterogeneous process. Depending on the effects of different disease-modifying drugs, fibrosis may regress differently, with variations in morphological and architectural features across zonal regions.
- A histological system that was developed based on changes in untreated individuals largely does not account well for changes after an intervention.
- Hence, sponsors and regulatory agencies are working to explore the use of artificial intelligence (AI) in digital pathology to facilitate accurate fibrosis assessment.

AIM

- To lead the advancement of AI in digital pathology from an exploratory endpoint to a primary endpoint in NASH clinical trials. - qFibrosis has been used in the past in phase 2 trials to help stratify patient inclusion criteria for successful phase 3 trials.
 - The most recent development is the use of gFibrosis as a primary endpoint in a NASH phase 2 study for the first time.

METHOD

- qFibrosis is an AI-based tool, which utilizes stain-free second harmonic generation/two-photon excitation fluorescence (SHG/TPE) microscopy to provide a standardised and reproducible guantification of NASH fibrosis on a linear scale, as well as fine details of the collagen fibres.^{1,2}
- It is a knowledge-based machine learning tool capable of automatically identifying and differentiating portal tracts and central veins, as well as to quantify collagen characteristics to provide an objective assessment on fibrosis patterns including peri-portal fibrosis, bridging fibrosis, of which these are key morphological features defined in NASH fibrosis system.

Week 36: Change in Fibrosis Score on Liver Biopsy Figure 1. (A) qFibrosis alignmen All phrediction in on liver biopry (with pathologist SHC Score score, blinded to treatment code. (B oFibrosis analysis of placebo versus resmetirom-treated aroups.4 17.000 10111

Figure 2. The advancement of qFibrosis from an exploratory endpoint to primary endpoint in NASH clinical trials

Artificial intelligence slide reading technologies were employed to measure the effect on fibrosis on serial liver biopsy using both Exploratory continuous and quantitative scoring (NCT03900429). Endpoint

• To measure the change in the amount of fibrous area and fibrosis score from baseline to end-of-treatment as assessed by Secondary artificial intelligence-based digital pathology (NCT03900429). Endpoin

 Change in the continuous quantitative liver fibrosis (gEibrosis) score measured by second harmonic generation/two-photon Primary excitation microscopy (NCT05519475) Endpoint

• Figure 2: Increasingly, qFibrosis is included in prospective studies, first as exploratory endpoint to supplement analysis done by pathologists⁵ (NCT03900429), then as a secondary endpoint in a NASH phase 2b study (NCT04906421). The most recent development is reporting the change in gFibrosis as a primary endpoint in a phase 2 NASH study (NCT05519475).

 Figure 1A): In Resmetirom phase 2 NASH study (NCT02912260), gFibrosis demonstrated correlation with pathologist's scores (r=0.776).

• Figure 1B): Using SHG in a blinded retrospective study, resmetirom group showed a statistically significant ≥ 1 point reduction in fibrosis score at Week 36 in 32% of the patients compared with 12% of the patients in placebo (p=0.03). Furthermore, it identified patients with F3 fibrosis is the best responders.4

· gFibrosis has been applied in over a dozen non-cirrhotic and cirrhotic NASH retrospective studies, where correlation with central pathologists' ranges from 0.57 - 0.81. (Data not shown)

> Table 1. Mean percentage agreement and linearly weighted Kappa results for inter- and intra-observer unassisted and assisted reads of liver fibrosis scoring in NASH patients.⁶

		Unassisted	Assisted
Inter- observer	Mean Percentage Agreement	89.4%	92.9%
	Mean Weighted Kappa (Linear)	0.72	0.82
Intra- observer	Mean Percentage Agreement	92.1%	96.5%
	Mean Weighted Kappa (Linear)	0.79	0.91

- SHG/TPE with gFibrosis has several advantages over standard histology for fibrosis assessment, as it removes inherent tissuestaining variations and enables the guantification of fibrillar characteristics of collagen fibers as markers of fibrosis progression and regression.
- Table 1: The "assisted" pathologist reads, in which pathologists are provided qFibrosis information and SHG images, have been demonstrated to substantially improve inter-reader agreement of fibrosis staging with reported mean kappa values of 0.82 (i.e., near perfect agreement).6
- Hence, in addition to endpoints, gFibrosis has been leveraged upon to assist the pathologists in determining study eligibility based on liver disease inclusion criteria and categorical histology endpoints (NCT05519475).

- gFibrosis in relation to liver-related clinical outcomes Figure 3. The ability of four selected fibrosis-related parameters (q-FPs) to discriminate between fibrosis stages 0-4 in an independent NASH cohort.³ 14 --Effort ------
- Figure 3: q-FPs has been shown Figure 4. Incidence of liver-related to correlate with histological events in patients stratified by q-FPs. scoring and it provides an accurate reproducible method to 100 2 6 10 (2010 0) 10 (2010) 2 10 (2010) 2 7 7 7 8 2 6 (2010) evaluate fibrosis in NASH along a quantitative and continuous scale with the discriminative ability to 23. Ten

6 regits Cuteriori (446 - 025.0

Para Ada jung

Contraction (California) Contraction (California) (California) Contraction (California) (California)

- differentiate fibrosis stages 0 4. • Figure 4: The stratification was based on the cut offs for the diagnosis of F3-F4 disease. where the values in the upper end may have additional prognostic significance, i.e., patients with high q-FPs had increased incidence of liverrelated events.
- Previous longitudinal studies have shown a close association between fibrosis stage and liverrelated morbidity and mortality.
- Hence, the eventual goal is to apply gFibrosis directly to predict hard endpoints in patients with NASH, as opposed to rely on ordinal fibrosis scores as a surrogate.⁸ Validation study is ongoing.

CONCLUSIONS

- qFibrosis has the potential to provide a quantitative understanding of subtle morphological changes due to treatment-induced fibrosis regression, allowing it to be more sensitive to change within the timeframes of typical phase 2 and 3 NASH drug trials
- . This can be used for better stratification of patient inclusion criteria, which is crucial for efficacy evaluation during drug development, as well as for diagnosis once the drug is approved
- Clinical relevance of qFibrosis measurements in the context of NASH will have to be established in future studies in relation to liver-related clinical outcomes.

REFERENCES

- 1. Liu F, et al. Hepatology 2020;71:1953-66
- 2. Soon G, et al. Clin Mol Hepatology 2021;27:44-57
- 3. Naoumov et. al. Journal of Hepatology 2022; 77(5):1399-1409 4. Harrison SA, et al. Steatosis and fibrosis measured as continuous variables on paired, serial liver biopsies in the Resmetirom (MGL-3196) 36-week phase 2 NASH study. In: AASLD; 2019. Abstract
- #2133. 5. Harrison SA, et al. EASL; 2023. Late-breaker poster #LBP-017
- 6. Soon G, et al. Clin Gastroenterol Hepatol. 2022 Jun 10:S1542-3565.
- Wang Y, et al. Hepatology. 2017 Jun;65(6):1891-1903.
- 8. Kendall TJ, et al. EASL; 2023. Oral Presentation

ACKNOWLEDGEMENTS

All authors participated in the development of this poster and approved the final poster for presentation.

CONTACT INFORMATION

Dean.Tai@histoindex.com

-

60 EASL